
Fall 2018
MA 26600 
Study Guide #2

(1) First Order Differential Equations. (Separable, 1st Order Linear, Homogeneous, Exact)

(2) Second Order Linear Homogeneous with Equations Constant Coefficients .

The differential equation ay′′ + by ′ + cy = 0 has Characteristic Equation ar2+ br+ c = 0 . Call the
roots r1 and r2. The general solution of ay′′ + by′ + cy = 0 is as follows:

(a) If r1, r2 are real and distinct ⇒ y = C1 e
r1t + C2 e

r2t

(b) If r1 = λ+ iµ (hence r2 = λ− iµ) ⇒ y = C1 e
λt cosµt+ C2 e

λt sinµt

(c) If r1 = r2 (repeated roots) ⇒ y = C1 e
r1t + C2 te

r1t

(3) Theory of 2nd Linear Order Equations.

Wronskian of y1, y2 is W (y1, y2)(t) =

∣∣∣∣∣∣∣
y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣∣∣∣ .
(a) The functions y1(t) and y2(t) are linearly independent over a < t < b if W (y1, y2) ̸= 0 for at

least one point in the interval.

(b) THEOREM (Existence & Uniqueness) If p(t), q(t) and g(t) are continuous in an open

interval α < t < β containing t0, then the IVP


y′′ + p(t) y′ + q(t) y = g(t)
y(t0) = y0
y′(t0) = y1

has a unique solution y = ϕ(t) defined in the open interval α < t < β.

(c) Superposition Principle If y1(t) and y2(t) are solutions of the 2nd order linear homogeneous
equation P (t)y′′ +Q(t)y′ +R(t)y = 0 over the interval a < t < b, then y = C1 y1(t) + C2 y2(t)
is also a solution for any constants C1 and C2.

(d) THEOREM (Homogeneous) If y1(t) and y2(t) are solutions of the linear homogeneous
equation P (t)y′′ +Q(t)y′ + R(t)y = 0 in some interval I and W (y1, y2) ̸= 0 for some t1 in I,
then the general solution is yc(t) = C1 y1(t)+C2 y2(t). This is usually called the complementary
solution and we say that y1(t), y2(t) form a Fundamental Set of Solutions (FSS) to the differential
equation.

(e) THEOREM (Nonhomogeneous) The general solution of the nonhomogeneous equation

P (t)y′′ +Q(t)y′ +R(t)y = G(t)

is y(t) = yc(t) + yp(t), where yc(t) = C1 y1(t) + C2 y2(t) is the general solution of the corre-
sponding homogeneous equation P (t)y′′ +Q(t)y′ + R(t)y = 0 and yp(t) is a particular solution
of the nonhomogeneous equation P (t)y′′ +Q(t)y′ +R(t)y = G(t).

(f) Useful Remark : If yp1(t) is a particular solution of P (t)y′′ + Q(t)y′ + R(t)y = G1(t) and if
yp2(t) is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = G2(t), then

yp(t) = yp1(t) + yp2(t)

is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = [G1(t) +G2(t)] .



(4) Reduction of Order. If y1(t) is one solution of P (t)y′′ + Q(t)y′ + R(t)y = 0, then a second

solution may be obtained using the substitution y = v(t) y1(t) . This reduces the original 2nd

order equation to a 1st equation using the substitution w =
dv

dt
. Solve that first order equation for

w, then since w =
dv

dt
, solve this 1st order equation to determine the function v.

(5) Finding A Particular Solution yp(t) to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution yp(t) of the
linear nonhomogeneous equation y′′ + p(t) y ′ + q(t) y = g(t) . Variation of Parameters may require
integration techniques.

If the coefficients of the differential equation are constants rather than functions and if g(t) has a
very special form (see table below), it is usually easier to use Undetermined Coefficients :

(a) Undetermined Coefficients - IF ay′′ + by ′ + cy = g(t) AND g(t) is as below:

g(t) Form of yp(t)

Pm(t) = amt
m + am−1t

m−1 + · · ·+ a0 ts {Amt
m + Am−1t

m−1 + · · ·+ A0}

eαt Pm(t) ts {eαt (Amt
m + Am−1t

m−1 + · · ·+ A0)}

eαt Pm(t) cos βt or eαt Pm(t) sin βt ts {eαt [Fm(t) cos βt+ Gm(t) sin βt]}

where s = the smallest nonnegative integer (s = 0, 1 or 2) such that no term of yp(t) is a
solution of the corresponding homogeneous equation. In other words, no term of yp(t) is a term
of yc(t). (Fm(t), Gm(t) are both polynomials of degree m.)

(b) Variation of Parameters - If y1(t) and y2(t) are two independent solutions of the homoge-
neous equation y′′ + p(t) y ′ + q(t) y = 0, then a particular solution yp(t) of the nonhomogeneous
equation

y′′ + p(t) y ′ + q(t) y = g(t) (∗)

has the form

yp(t) = u1(t) y1(t) + u2(t) y2(t)

where

u ′
1 =

∣∣∣∣∣ 0 y2
g(t) y′2

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣∣
, u ′

2 =

∣∣∣∣∣ y1 0
y′1 g(t)

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣∣
.

Remember: Coefficient of y′′ in (∗) must be “1” in order to use the above formulas.



(6) Spring-Mass Systems

{
mu′′ + γ u′ + k u = F (t)
u(0) = u0 , u′(0) = u1

m = mass of object, γ = damping constant, k = spring constant, F (t) = external force Weight
w = mg, Hooke’s Law : Fs = k d ,
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u(t)

d

m

L
0

m

d

F = Fs g
kd=mg

equilibrium:

L0 L0

I Undamped Free Vibrations : mu′′ + k u = 0 (Simple Harmonic Motion)

Note that A cosω0t+B sinω0t = R cos(ω0t− δ), where R =
√
A2 +B2 = amplitude,

ω0 = frequency,
2π

ω0

= period and δ = phase shift determined by tan δ =
B

A
.

II Damped Free Vibrations : mu′′ + γ u′ + k u = 0

(i) γ2 − 4km > 0 (overdamped ) ⇐⇒ distinct real roots to CE

(ii) γ2 − 4km = 0 (critically damped ) ⇐⇒ repeated roots to CE

(iii) γ2 − 4km < 0 (underdamped ) ⇐⇒ complex roots to CE (motion is oscillatory)

III Forced Vibrations : (F (t) = F0 cosωt or F (t) = F0 sinωt, for example)

(i) mu′′ + γ u′ + k u = F (t) (Damped) In this case if you write the general solution as u(t) =
uT (t) + u∞(t), then uT (t) = Transient Solution (i.e. the part of u(t) such that uT (t) −→ 0
as t −→ ∞) and u∞(t) = Steady-State Solution (the solution behaves like this function in
the long run).

(ii) mu′′ + k u = F0 cosωt (Undamped) If ω = ω0 =

√
k

m
⇒ Resonance occurs and the

solution is unbounded; while if ω ̸= ω0 then motion is a series of beats (solution is
bounded)

(7) nth Order Linear Homogeneous Equations With Constant Coefficients

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0 (∗)

This differential equation has n independent solutions.

Characteristic Equation : a0r
n + a1r

n−1 + · · · + an−1r + an = 0 will have n characteristic roots
that may be real and distinct, repeated, complex, or complex and repeated.



(a) For each real root r that is not repeated ⇒ get a solution of (∗): ert

(b) For each real root r that is repeated m times ⇒ get m independent solutions of (∗):

ert, tert, t2ert, · · · , tm−1ert

(c) For each complex root r = λ+ iµ repeated m times ⇒ get 2m solutions of (∗):
eλt cosµt, teλt cosµt, · · · , tm−1eλt cosµt and eλt sinµt, teλt sinµt, · · · , tm−1eλt sinµt

(don’t need to consider its conjugate root λ− iµ)

(8) Undetermined Coefficients for nth Order Linear Equations

This can only be used to find yp(t) of a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = g(t) and g(t) one of

the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the same form as
before : yp(t) = t s [· · ·] , where s = the smallest nonnegative integer such that no term of yp(t) is
a term of yc(t), except this time s = 0, 1, 2, . . . , n .

(9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition :

L{f(t)} = F (s) =
∫ ∞

0
e −st f(t) dt

and using a table of Laplace transforms (see table on page 317) and using linearity : L{f(t) +
g(t)} = L{f(t)}+ L{g(t)} , L{c f(t)} = cL{f(t)} .

(b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace transforms usu-
ally together with Partial Fractions or Completing the Square, to find inverse Laplace transforms:
f(t) = L−1{F (s)} .

(c) Solving Initial Value Problems: Recall that

L{y ′} = sL{y} − y(0)

L{y ′′} = s2 L{y} − s y(0)− y ′(0)

L{y ′′′} = s3 L{y} − s2 y(0)− s y ′(0)− y′′(0)
...

(d) Discontinuous Functions :

(i) Unit Step Function (Heaviside Function) : If c ≥ 0 , uc(t) =

{
0 , t < c
1 , t ≥ c

y

t
c0

1

y = u (t)c

L{uc(t)} =
e −c s

s



(ii) Unit “Pulse” Function : ua(t)− ub(t) =

{
1, a ≤ t < b
0, otherwise

t

y

1

a b0

y = u (t)−u (t)a b

(iii) Translated Functions : y = g(t) =

{
0 , t < c

f(t− c) , t ≥ c
= uc(t) f(t− c) .

y y
y=f(t) y=g(t)

0 0 c
t t

f(0) f(0)

L{uc(t) f(t−c)} = e −c s F (s) ,where F (s) = L{f(t)}

Thus, L −1{e −c s F (s)} = uc(t) f(t− c) , where f(t) = L −1{F (s)}

A useful formula NOT in the book : L{uc(t)h(t)} = e −c s L{h(t + c)}

(iv) Unit Impulse Functions : If y = δ(t− c) ( c ≥ 0) , then L{δ(t− c)} = e−cs

(e) Convolutions: L{(f ∗ g)(t)} = L
{∫ t

0
f(t− τ) g(τ) dτ

}
= L{f(t)} L{g(t)}



(10) Systems of Linear Differential Equations : x ′(t) = Ax(t)

(a) Rewrite a single nth order equation p0(t)y
(n) + p1(t)y

(n−1) + · · · + pn(t)y = g(t) as a system of
1st order equations. Use the substitution :

Let

x1 = y

x2 = y ′

...
xn = y(n−1)

to get 1st Order System :



x′
1 = x2

x′
2 = x3
...

x′
n−1 = xn−2

x′
n =

1

p0
{−pnx1 − pn−1x2 − · · · − p1xn + g(t)}

(b) Existence & Uniqueness Theorem for Systems. If P(t) and g(t) are continuous on an

interval α < t < β containing t0, then the IVP

{
x′(t) = P(t)x(t)

x(t0) = x0
has a unique solution x(t)

defined on the interval α < t < β .

(c) The set of vectors
{
x(1), x(2), · · · ,x(m)

}
is linearly independent if the equation

k1x
(1) + k2x

(2) + · · ·+ kmx
(m) = 0

is satisfied only for k1 = k2 = · · · = km = 0. This means you cannot write any one of these
vectors as a linear combination of the others.

(d) Solve 2×2 systems of 1st order equations

(
x1

x2

) ′

=

(
a b
c d

) (
x1

x2

)
i.e., x′ = Ax using :

(i) Elimination Method : Basic idea - eliminate one of the unknowns (either x1 or x2) from
the original system to get an equivalent single 2nd order differential equation.

(ii) Eigenvalues & Eigenvectors Method : See (11) below for solutions via this method
and corresponding phase portraits.

Eigenvalue : If A =

(
a b
c d

)
, then the eigenvalues of A are the roots of

|A− λ I| =
∣∣∣∣∣ (a− λ) b

c (d− λ)

∣∣∣∣∣ = 0

Eigenvector : v⃗ =

(
v1
v2

)
̸=
(

0
0

)
is a nonzero solution to (A− λ I) v⃗ = 0⃗ .

(e) If x(1)(t) =

(
x11(t)
x21(t)

)
and if x(2)(t) =

(
x12(t)
x22(t)

)
, then the Wronskian is

W [x(1),x(2)] =

∣∣∣∣∣ x11(t) x12(t)
x21(t) x22(t)

∣∣∣∣∣ .
If x(1)(t) and x(2)(t) are solutions of x ′ = Ax andW [x(1),x(2)](t1) ̸= 0, then the set {x(1)(t),x(2)(t)}
forms a Fundamental Set of Solutions of the system and a Fundamental Matrix is

Φ(t) =

(
x11(t) x12(t)
x21(t) x22(t)

)
.



(11) Eigenvalue & Eigenvector Method and Phase Portraits : x ′ = Ax

The following describes how to find the general solution to (∗) and plot solutions (trajectories). A
plot of the trajectories of a given homogeneous system

x ′ =

(
a b
c d

)
x (∗)

is called a phase portrait. To sketch the phase portrait, we need to find the corresponding eigen-

values and eigenvectors of the matrix A =

(
a b
c d

)
and then consider 3 cases :

(a) λ1 < λ2, real and distinct : If v (1) , v (2) are e-vectors corresponding to λ1 and λ2, respec-

tively ⇒ x (1)(t) = eλ1t v (1) and x (2)(t) = eλ2t v(2) are solutions and hence general solution of

(∗) is x(t) = C1 x
(1)(t) + C2 x

(2)(t) and hence if λ1 < λ2 :

x(t) = C1 e
λ1t v (1)︸ ︷︷ ︸+ C2 e

λ2t v (2)︸ ︷︷ ︸
dominates dominates

as t −→ −∞ as t −→ ∞

v
v

v
v

vv

x

(1)
(2)

x1

x2

x1

2

(1)

(2)

x

x1

2

(1)
(2)

0

0

0

 
0 < λ  < λ 

λ  < λ  < 0

λ   < 0 < λ1

1 2

21

2



(b) λ1 = α + i β : If w = a+ ib is a complex e-vector corresponding to λ1 then ⇒

x (1)(t) = ℜe
{
eλ1tw

}
= eα t (a cos βt− b sin βt) and

x (2)(t) = ℑm
{
eλ1tw

}
= eα t (a sin βt + b cos βt) are real-valued solutions and hence general

solution of (∗) is x(t) = C1 x
(1)(t) + C2 x

(2)(t) .

If say α < 0 :

 

0

x2

x1

x2

OR

x10

(Test a point to decide which)

(c) λ1 = λ2 : If there is only one linearly independent eigenvector corresponding to λ1, then
solutions to x ′ = Ax are x (1)(t) = eλ1t v and x (2)(t) = t eλ1t v + eλ1t a , where

(A− λ1 I)v = 0
(A− λ1 I) a = v

(v is an eigenvector of A, while a is called a “generalized eigenvector” of A)

The general solution of the system (∗) is x(t) = C1 x
(1)(t) + C2 x

(2)(t) and hence:

x(t) = C1 e
λ1t v + C2

[
t eλ1t v︸ ︷︷ ︸ + eλ1t a

]
dominates
as t −→ ±∞

If say λ1 < 0 :

 

0

x2

x1 1x

x
2

0

OR

v v

(Test a point to decide which)



(12) Particular Solutions to Nonhomogeneous Linear Systems :

x ′ = Ax+ g(t)

(a) Undetermined Coefficients for Systems The column vector g⃗(t) =

(
g1(t)
g2(t)

)
must have

each component function g1(t) and g2(t) as one of the three special forms like those for Undeter-
mined Coefficients for regular 2nd order equations and A must be a constant matrix. The main
difference is if say g(t) = u eλt and λ is also an eigenvalue of A, then try a particular solution
of the form xp = a teλt + b eλt .

(b) Variation of Parameters for Systems : x ′ = A(t)x+ g(t):

xp(t) = Φ(t)
∫

Φ−1(t)g(t) dt ,

where Φ(t) is a Fundamental Matrix of the homogeneous system x ′ = A(t)x+ g(t) can have
any form and A need not be a constant matrix.

Practice Problems

[1] For what value of α will the solution to the IVP


y′′ − y′ − 2y = 0
y(0) = α
y′(0) = 2

satisfy y → 0 as t → ∞ ?

[2] (a) Show that y1 = x and y2 = x−1 are solutions of the differential equation x2y′′ + xy′ − y = 0.
(b) Evaluate the Wronskian W (y2, y1) at x = 1

2
.

(c) Find the solution of the initial value problem x2y′′ + xy′ − y = 0, y(1) = 2, y′(1) = 4.

[3] Find the largest open interval for which the initial value problem

3x2y′′ + y ′ +
1

x− 2
y =

1

x− 3
, y(1) = 3, y′(1) = 2, has a solution.

In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a) and use
the method of Undetermined Coefficients to find a particular solution yp in (b) and find the form of
a particular solution (c).
[4] (a) y′′ − 5y′ + 6y = 0 (b) y′′ − 5y′ + 6y = t2 (c) y′′ − 5y′ + 6y = e2t + cos(3t)

[5] (a) y′′ − 6y′ + 9y = 0 (b) y′′ − 6y′ + 9y = te3t (c) y′′ − 6y′ + 9y = et + cos(3t)

[6] (a) y′′ − 2y′ + 10y = 0 (b) y′′ − 2y′ + 10y = ex + cos(3x) (c) y′′ − 2y′ + 10y = ex cos(3x)

[7] Find the general solution to (a) y′′ + y′ − 6y = 7e4t (b) y′′ + y′ − 6y = 7e4t − 100 sin t

[8] Solve this IVP: y′′ − y′ = 4t, y(0) = 0, y′(0) = 0.

[9] Find the general solution to y′′ + y = tan t , 0 < x < π
2
.

[10] The differential equation x2y′′ − 2xy′ + 2y = 0 has solutions y1(x) = x and y2 = x2. Use the method
of Variation of Parameters to find a solution of x2y′′ − 2xy′ + 2y = 2x2.

[11] The differential equation x2y′′+xy′−y = 0 has one solution y1(x) = x. Use the method of Reduction
of Order to find a second (linearly independent) solution of x2y′′ + xy′ − y = 0.
[12] For what nonnegative values of γ will the the solution of the initial value problem

u′′ + γu′ + 4u = 0, u(0) = 4, u′(0) = 0 oscillate ?

[13] (a) For what positive values of k does the solution of the initial value problem
2u′′ + ku = 3 cos(2t), u(0) = 0, u′(0) = 0, become unbounded (Resonance) ?



(b) For what positive values of k does the solution of the initial value problem
2u′′ + u′ + ku = 3 cos(2t), u(0) = 0, u′(0) = 0, become unbounded (Resonance) ?

[14] Find the steady–state solution of the IVP y′′ + 4y′ + 4y = sin t, y(0) = 0, y′(0) = 0.

[15] A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium

position with a downward velocity of 10 m/sec, what is the maximum displacement ?

In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a) and use the
method of Undetermined Coefficients to find the form of a particular solution of the nonhomogeneous
equation in (b).
[16] (a) y′′′ − y′ = 0 (b) y′′′ − y′ = t+ et

[17] (a) y′′′ − y′′ − y′ + y = 0 (b) y′′′ − y′′ − y′ + y = et + cos t

[18] Find the solution of the initial value problem y′′′ − 2y′′ + y′ = 0, y(0) = 2, y′(0) = 0, y′′(0) = 1.

[19] Find the general solution of the differential equation y′′′ + y′ = t2.

[20] Find the general solution of y′′ + 4y ′ = −10 cos 2t.

[21] Find a fundamental set of solutions of y(5) − 4y′′′ = 0 .

[22] Find the Laplace transform of these functions:

(a) f(t) = 3− e2t (b) g(t) = 100 t5 (c) h(t) = cosh πt (d) k(t) = −10t3e5t

[23] Find the inverse Laplace transform of

(a) F (s) =
9

s2 − s− 2
(b) F (s) =

s

(s− 1)2
(c) F (s) =

8

(s+ 1)4
(d) F (s) =

3s+ 2

s2 + 2s+ 5

[24] Solve these initial value problems: (a)


y′′ − y ′ − 6y = 0
y(0) = 1
y′(0) = −1

(b)


y′′ − 2y′ + 2y = cos t
y(0) = 1
y ′(0) = 0

(c) y′′ − y =

{
1 , t < 5
2 , 5 ≤ t < ∞ ; y(0) = y′(0) = 0.

(d) y′′ + 4y =

{
t , t < 1
0 , 1 < t < ∞ ; y(0) = y′(0) = 0.

(e) y ′ + y = g(t) , y(0) = 0 and where g(t) :
y

20

t
4

y = g (t)

3

(f) y′′ + 4y = δ(t− 3) , y(0) = y ′(0) = 0

[25] L
{∫ t

0
100 e−2τ cosπ(t− τ) dτ

}
= ?

[26] If g(t) = L−1{G(s)}, then L−1

{
G(s)

(s− 3)2

}
= ?

[27] Use the Elimination Method to solve the system

{
x′
1 = x1 + x2

x′
2 = 4x1 + x2

[28] Rewrite the 2nd order differential equation y′′ + 2y′ + 3ty = cos t with y(0) = 1, y′(0) = 4 as a

system of 1st order differential equations.

[29] Find eigenvalues and corresponding eigenvectors of (a) A =

(
1 1
4 1

)
(b) A =

(
−2 0
1 −1

)



[30] Find the solution of the IVP

(
x1

x2

) ′

=

(
1 1
4 1

)(
x1

x2

)
,

(
x1(0)
x2(0)

)
=

(
3
2

)
.

Find a fundamental matrix Φ(t).

[31] Solve

(
x1

′

x2
′

)
=

(
1 1

−1 1

)(
x1

x2

)
, x⃗(0) =

(
−1
2

)
.

[32] Find the general solution of the system x⃗ ′(t) = A x⃗(t) , where A =

(
1 1
0 1

)
.

[33] Tank # 1 initially holds 50 gals of brine with a concentration of 1 lb/gal, while Tank # 2 initially
holds 25 gals of brine with a concentration of 3 lb/gal. Pure H2O flows into Tank # 1 at 5 gal/min. The
well-stirred solution from Tank # 1 then flows into Tank # 2 at 5 gal/min . The solution in Tank # 2
flows out at 5 gal/min. Set up and solve an IVP that gives x1(t) and x2(t), the amount of salt in Tanks #
1 and # 2, respectively, at time t.

[34] Tank # 1 initially holds 50 gals of brine with concentration of 1 lb/gal and Tank # 2 initially holds
25 gals of brine with concentration 3 lb/gal. The solution in Tank # 1 flows at 5 gal/min into Tank # 2,
while the solution in Tank # 2 flows back into Tank # 1 at 5 gal/min. Set up an IVP that gives x1(t) and
x2(t), the amount of salt in Tanks # 1 and # 2, respectively, at time t.

[35] Find the general solution of

(
x1

x2

)′

=

(
−2 0
1 −1

)(
x1

x2

)
+

(
3
1

)
et.

[36] Find a particular solution of

(
x1

x2

)′

=

(
0 1
1 0

)(
x1

x2

)
−
(

2
3

)
.

[37] Find the general solution of

(
x1

x2

)′

=

(
2 0
1 1

)(
x1

x2

)
−
(

6e−t

1

)
.

[38]Match the phase portraits shown below that best corresponds to each of the given systems of differential
equations:

(i) x⃗ ′ =

(
0 1
1 0

)
x⃗ ; Solution : x⃗(t) = C1

(
1
1

)
et + C2

(
1

−1

)
e−t

(ii) x⃗ ′ =

(
2 −1

−1 2

)
x⃗ ; Solution : x⃗(t) = C1

(
1
1

)
et + C2

(
1

−1

)
e3t

(iii) x⃗ ′ =

(
2 −1
1 0

)
x⃗ ; Solution : x⃗(t) = C1

(
2
2

)
et + C2e

t

{(
2
2

)
t+

(
1

−1

)}

(iv) x⃗ ′ =

(
−1 1
−1 −1

)
x⃗ ; Solution : x⃗(t) = C1

(
cos t

− sin t

)
e−t + C2

(
sin t
cos t

)
e−t

(A) (B)



(C) (D)

(E) (F)

(G) (H)



Answers

[1] α = −2 [2] (b) W (x−1, x)(1
2
) = 4 ; (c) y = 3x− x−1 [3] 0 < x < 2

[4] (a) y = C1e
2t + C2e

3t (b) y = At2 +Bt+ C (c) y = Ate2t +B cos(3t) + C sin(3t)
[5] (a) y = C1e

3t + C2te
3t (b) y = t2(At+B)e3t (c) y = Aet +B cos(3t) + C sin(3t)

[6] (a) y = C1e
x cos(3x) + C2e

x sin(3x) (b) y = Aex +B cos(3x) + C sin(3x)
(c) y = x(A cos(3x) +B sin(3x))ex

[7](a) y = C1e
−3t + C2e

2t + 1
2
e4t (b) y = C1e

−3t + C2e
2t + 1

2
e4t + 2 cos t+ 14 sin t

[8] y = −4 + 4et − 2t2 − 4t
[9] y = C1 cos t+ C2 sin t− (cos t) ln(sec t+ tan t)
[10] y = 2x2 lnx or y = 2x2 lnx+ (C1x+ C2x

2)
[11] y = x−1 or y = Ax−1 +Bx, A ̸= 0
[12] 0 ≤ γ < 4
[13] (a) k = 8 (resonance) (b) NO value of k, all solutions are bounded.

[14] y = 1
25
(3 sin t− 4 cos t)

[15] u(t) = cos 5t+ 2 sin 5t =
√
5 cos (5t− δ), δ = tan−1 2 ≈ 1.1 Thus amplitude =

√
5.

[16] (a) y = C1 + C2e
−t + C3e

t (b) y = t(At+B) + Ctet

[17] (a) y = C1e
t + C2te

t + C3e
−t (b) y = At2et +B cos t+ C sin t

[18] y = 3− et + tet

[19] y = C1 + C2 cos t+ C3 sin t+
1

3
t3 − 2t

[20] y = C1 + C2e
−4t +

(
1
2
cos 2t− sin 2t

)
[21] {1, t, t2, e2t, e−2t}
[22] (a)

2s− 6

s2 − 2s
(b)

12000

s6
(c)

s

s2 − π2
(d) − 60

(s− 5)4

[23] (a) 3(e2t − e−t) (b) et + tet (c) 4
3
t3e−t (d) 3e−t cos 2t− 1

2
e−t sin 2t

[24] (a) y = 1
5
(e3t + 4e−2t) (b) y = 1

5
(cos t− 2 sin t+ 4et cos t− 2et sin t)

(c) y = −1 + 1
2
(et + e−t) + u5(t)(−1 + 1

2
(e(t−5) + e−(t−5))),

or y = −1 + cosh t+ u5(t)(−1 + cosh(t− 5))
(d) y = (−1

8
sin 2t+ t

4
)− u1(t)(−1

8
sin 2(t− 1) + t−1

4
)− u1(t)(

1
4
− 1

4
cos 2(t− 1))

(e) y = 3 (1− e−t)− 3u2(t)(1− e−(t−2)) + 3 u4(t)(1− e−(t−4)) (f) y = 1
2
u3(t)(t) sin 2(t− 3)

[25]
100 s

(s+ 2)(s2 + π2)
[26]

∫ t

0
(t− τ) e3(t−τ)g(τ) dτ or

∫ t

0
τ e3τg(t− τ) dτ

[27] x1(t) = C1e
3t + C2e

−t, x2(t) = 2C1e
3t − 2C2e

−t

[28] Let x1 = y, x2 = y′, then

{
x′
1 = x2

x′
2 = −3tx1 − 2x2 + cos t

, where x1(0) = 1, x2(0) = 4

[29] (a) λ1 = 3, v(1) =

(
1
2

)
; λ2 = −1, v(2) =

(
1

−2

)

[29] (b) λ1 = −1, v(1) =

(
0
1

)
; λ2 = −2, v(2) =

(
1

−1

)

[30] x(t) = 2 e3t
(

1
2

)
+ e−t

(
1

−2

)
, Φ(t) =

(
e3t e−t

2e3t −2e−t

)

[31] x(t) = 2 et
(

sin t
cos t

)
− et

(
cos t

− sin t

)
[32] x(t) = C1e

t

(
1
0

)
+ C2

{
et
(

0
1

)
+ tet

(
1
0

)}

[33]

(
x1

x2

)′

=

(
− 1

10
0

1
10

−1
5

)(
x1

x2

)
,

(
x1(0)
x2(0)

)
=

(
50
75

)

Solution :

(
x1

x2

)
= 50e−

t
10

(
1
1

)
+ 25e−

t
5

(
0
1

)



[34]

(
x1

x2

)′

=

(
− 1

10
1
5

1
10

−1
5

)(
x1

x2

)
,

(
x1(0)
x2(0)

)
=

(
50
75

)

Solution :

(
x1

x2

)
= 125

3

(
2
1

)
− 100

3
e−

3t
10

(
1

−1

)

[35] x(t) = C1e
−t

(
0
1

)
+ C2e

−2t

(
1

−1

)
+ et

(
1
1

)
[36] xp(t) =

(
3
2

)

[37] x(t) = C1e
t

(
0
1

)
+ C2e

2t

(
1
1

)
+ e−t

(
2

−1

)
+

(
0
1

)
[38] (i) C (ii) A (iii) B (iv) D



f(t) = L−1{F (s)} F (s) = L{f(t)}

1. 1
1

s

2. eat
1

s− a

3. tn
n !

sn+1

4. tp (p > −1)
Γ(p+ 1)

sp+1

5. sin at
a

s2 + a2

6. cos at
s

s2 + a2

7. sinh at
a

s2 − a2

8. cosh at
s

s2 − a2

9. eat sin bt
b

(s− a)2 + b2

10. eat cos bt
s− a

(s− a)2 + b2

11. tneat
n !

(s− a)n+1

11. tneat
n !

(s− a)n+1

12. uc(t)
e−cs

s

13. uc(t)f(t− c) e−csF (s)

14. ectf(t) F (s− c)

15. f(ct)
1

c
F
(
s

c

)
, c > 0

16.
∫ t

0
f(t− τ) g(τ) dτ F (s)G(s)

17. δ(t− c) e−cs

18. f (n)(t) snF (s)− sn−1f(0)− · · · − sf (n−2)(0)− f (n−1)(0)

19. (−t)nf(t) F (n)(s)


