(1) First Order Differential Equations. (Separable, $1^{\text {st }}$ Order Linear, Homogeneous, Exact)
(2) Second Order Linear Homogeneous with Equations Constant Coefficients .

The differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ has Characteristic Equation $a r^{2}+b r+c=0$. Call the roots $r_{1}$ and $r_{2}$. The general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is as follows:
(a) If $r_{1}, r_{2}$ are real and distinct $\Rightarrow y=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$
(b) If $r_{1}=\lambda+i \mu$ (hence $\left.r_{2}=\lambda-i \mu\right) \Rightarrow y=C_{1} e^{\lambda t} \cos \mu t+C_{2} e^{\lambda t} \sin \mu t$
(c) If $r_{1}=r_{2}$ (repeated roots) $\Rightarrow y=C_{1} e^{r_{1} t}+C_{2} t e^{r_{1} t}$

## (3) Theory of $2^{n d}$ Linear Order Equations.

Wronskian of $y_{1}, y_{2}$ is $\quad W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{cc}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|$.
(a) The functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent over $a<t<b$ if $W\left(y_{1}, y_{2}\right) \neq 0$ for at least one point in the interval.
(b) THEOREM (Existence \& Uniqueness) If $p(t), q(t)$ and $g(t)$ are continuous in an open interval $\alpha<t<\beta$ containing $t_{0}$, then the IVP $\left\{\begin{array}{l}y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \\ y\left(t_{0}\right)=y_{0} \\ y^{\prime}\left(t_{0}\right)=y_{1}\end{array}\right.$ has a unique solution $y=\phi(t)$ defined in the open interval $\alpha<t<\beta$.
(c) Superposition Principle If $y_{1}(t)$ and $y_{2}(t)$ are solutions of the $2^{\text {nd }}$ order linear homogeneous equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$ over the interval $a<t<b$, then $y=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is also a solution for any constants $C_{1}$ and $C_{2}$.
(d) THEOREM (Homogeneous) If $y_{1}(t)$ and $y_{2}(t)$ are solutions of the linear homogeneous equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$ in some interval $I$ and $W\left(y_{1}, y_{2}\right) \neq 0$ for some $t_{1}$ in $I$, then the general solution is $y_{c}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$. This is usually called the complementary solution and we say that $y_{1}(t), y_{2}(t)$ form a Fundamental Set of Solutions (FSS) to the differential equation.
(e) THEOREM (Nonhomogeneous) The general solution of the nonhomogeneous equation

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)
$$

is $\quad y(t)=y_{c}(t)+y_{p}(t)$, where $y_{c}(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ is the general solution of the corresponding homogeneous equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$ and $y_{p}(t)$ is a particular solution of the nonhomogeneous equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t)$.
(f) Useful Remark : If $y_{p_{1}}(t)$ is a particular solution of $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G_{1}(t)$ and if $y_{p_{2}}(t)$ is a particular solution of $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G_{2}(t)$, then

$$
y_{p}(t)=y_{p_{1}}(t)+y_{p_{2}}(t)
$$

is a particular solution of $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=\left[G_{1}(t)+G_{2}(t)\right]$.
(4) Reduction of Order. If $y_{1}(t)$ is one solution of $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$, then a second solution may be obtained using the substitution $\mathbf{y}=\mathrm{v}(\mathrm{t}) \mathbf{y}_{\mathbf{1}}(\mathrm{t})$. This reduces the original $2^{\text {nd }}$ order equation to a $1^{\text {st }}$ equation using the substitution $\mathrm{w}=\frac{\mathrm{dv}}{\mathrm{dt}}$. Solve that first order equation for $w$, then since $\mathrm{w}=\frac{\mathrm{dv}}{\mathrm{dt}}$, solve this $1^{\text {st }}$ order equation to determine the function v .

## (5) Finding A Particular Solution $y_{p}(t)$ to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution $y_{p}(t)$ of the linear nonhomogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. Variation of Parameters may require integration techniques.
If the coefficients of the differential equation are constants rather than functions and if $g(t)$ has a very special form (see table below), it is usually easier to use Undetermined Coefficients :
(a) Undetermined Coefficients - IF $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$ AND $g(t)$ is as below:

| $\boldsymbol{g}(\boldsymbol{t})$ | Form of $\boldsymbol{y}_{\boldsymbol{p}}(\boldsymbol{t})$ |
| :---: | :---: |
| $P_{m}(t)=a_{m} t^{m}+a_{m-1} t^{m-1}+\cdots+a_{0}$ | $t^{s}\left\{A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{0}\right\}$ |
| $e^{\alpha t} P_{m}(t)$ | $t^{s}\left\{e^{\alpha t}\left(A_{m} t^{m}+A_{m-1} t^{m-1}+\cdots+A_{0}\right)\right\}$ |
| $e^{\alpha t} P_{m}(t) \cos \beta t$ or $e^{\alpha t} P_{m}(t) \sin \beta t$ | $t^{s}\left\{e^{\alpha t}\left[F_{m}(t) \cos \beta t+G_{m}(t) \sin \beta t\right]\right\}$ |

where $s=$ the smallest nonnegative integer $\left(s=0,1\right.$ or 2 ) such that no term of $y_{p}(t)$ is a solution of the corresponding homogeneous equation. In other words, no term of $y_{p}(t)$ is a term of $y_{c}(t) . \quad\left(F_{m}(t), G_{m}(t)\right.$ are both polynomials of degree $m$.)
(b) Variation of Parameters - If $y_{1}(t)$ and $y_{2}(t)$ are two independent solutions of the homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, then a particular solution $y_{p}(t)$ of the nonhomogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{*}
\end{equation*}
$$

has the form

$$
y_{p}(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

where

$$
u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \\
g(t) & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}, \quad u_{2}^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & g(t)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|} .
$$

Remember: Coefficient of $y^{\prime \prime}$ in $(*)$ must be " 1 " in order to use the above formulas.
(6) $\underline{\text { Spring-Mass Systems }}\left\{\begin{array}{l}m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t) \\ u(0)=u_{0}, u^{\prime}(0)=u_{1}\end{array}\right.$
$m=$ mass of object, $\quad \gamma=$ damping constant, $\quad k=$ spring constant, $F(t)=$ external force Weight $w=m g, \quad$ Hooke's Law: $F_{s}=k d$,


I Undamped Free Vibrations : $m u^{\prime \prime}+k u=0$ (Simple Harmonic Motion)
Note that $A \cos \omega_{0} t+B \sin \omega_{0} t=R \cos \left(\omega_{0} t-\delta\right)$, where $R=\sqrt{A^{2}+B^{2}}=$ amplitude,
$\omega_{0}=$ frequency, $\frac{2 \pi}{\omega_{0}}=$ period and $\delta=$ phase shift determined by $\tan \delta=\frac{B}{A}$.
II Damped Free Vibrations : $m u^{\prime \prime}+\gamma u^{\prime}+k u=0$
(i) $\gamma^{2}-4 k m>0 \quad($ overdamped $) \Longleftrightarrow$ distinct real roots to CE
(ii) $\gamma^{2}-4 k m=0 \quad($ critically damped $) \Longleftrightarrow$ repeated roots to CE
(iii) $\gamma^{2}-4 k m<0 \quad$ (underdamped) $\Longleftrightarrow$ complex roots to CE (motion is oscillatory)

III Forced Vibrations : $\left(F(t)=F_{0} \cos \omega t\right.$ or $F(t)=F_{0} \sin \omega t$, for example)
(i) $m u^{\prime \prime}+\gamma u^{\prime}+k u=F(t)$ (Damped) In this case if you write the general solution as $u(t)=$ $\overline{u_{T}(t)+u_{\infty}(t) \text {, then } u_{T}(t)}=$ Transient Solution (i.e. the part of $u(t)$ such that $u_{T}(t) \longrightarrow 0$ as $t \longrightarrow \infty$ ) and $u_{\infty}(t)=$ Steady-State Solution (the solution behaves like this function in the long run).
(ii) $\underline{m u u^{\prime \prime}+k u=F_{0} \cos \omega t}$ (Undamped) If $\omega=\omega_{0}=\sqrt{\frac{k}{m}} \Rightarrow \quad$ Resonance occurs and the solution is unbounded; while if $\omega \neq \omega_{0}$ then motion is a series of beats (solution is bounded)
(7) $\underline{n}^{\text {th }}$ Order Linear Homogeneous Equations With Constant Coefficients

$$
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 \quad(*)
$$

This differential equation has $\boldsymbol{n}$ independent solutions.
Characteristic Equation: $a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0 \quad$ will have $\boldsymbol{n}$ characteristic roots that may be real and distinct, repeated, complex, or complex and repeated.
(a) For each real root $r$ that is not repeated $\Rightarrow$ get a solution of $(*)$ : $\quad e^{r t}$
(b) For each real root $r$ that is repeated $\underline{\boldsymbol{m}}$ times $\Rightarrow$ get $\underline{\boldsymbol{m}}$ independent solutions of (*):

$$
e^{r t}, t e^{r t}, t^{2} e^{r t}, \cdots, t^{m-1} e^{r t}
$$

(c) For each complex root $r=\lambda+i \mu$ repeated $\underline{\boldsymbol{m}}$ times $\Rightarrow$ get $\underline{\boldsymbol{m}}$ solutions of $(*)$ :

$$
e^{\lambda t} \cos \mu t, t e^{\lambda t} \cos \mu t, \cdots, t^{m-1} e^{\lambda t} \cos \mu t \quad \text { and } \quad e^{\lambda t} \sin \mu t, t e^{\lambda t} \sin \mu t, \cdots, t^{m-1} e^{\lambda t} \sin \mu t
$$

(don't need to consider its conjugate root $\lambda-i \mu$ )
(8) Undetermined Coefficients for $n^{\text {th }}$ Order Linear Equations

This can only be used to find $y_{p}(t)$ of $a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=g(t)$ and $g(t)$ one of the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the same form as before: $y_{p}(t)=t^{s}[\cdots]$, where $s=$ the smallest nonnegative integer such that no term of $y_{p}(t)$ is a term of $y_{c}(t)$, except this time $s=0,1,2, \ldots, n$.

## (9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition :

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

and using a table of Laplace transforms (see table on page 317) and using linearity : $\mathcal{L}\{f(t)+$ $g(t)\}=\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\}, \quad \mathcal{L}\{c f(t)\}=c \mathcal{L}\{f(t)\}$.
(b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace transforms usually together with Partial Fractions or Completing the Square, to find inverse Laplace transforms: $f(t)=\mathcal{L}^{-1}\{F(s)\}$.
(c) Solving Initial Value Problems: Recall that

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}\right\}=s \mathcal{L}\{y\}-y(0) \\
& \mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0) \\
& \mathcal{L}\left\{y^{\prime \prime \prime}\right\}=s^{3} \mathcal{L}\{y\}-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)
\end{aligned}
$$

(d) Discontinuous Functions :
(i) Unit Step Function (Heaviside Function) : If $c \geq 0, \quad u_{c}(t)= \begin{cases}0, & t<c \\ 1, & t \geq c\end{cases}$

$$
\begin{aligned}
& y=u_{c}(t) \\
& \mathcal{L}\left\{u_{c}(t)\right\}=\frac{e^{-c s}}{s}
\end{aligned}
$$

(ii) Unit "Pulse" Function : $u_{a}(t)-u_{b}(t)= \begin{cases}1, & a \leq t<b \\ 0, & \text { otherwise }\end{cases}$

(iii) Translated Functions: $y=g(t)=\left\{\begin{array}{cc}0, & t<c \\ f(t-c), & t \geq c\end{array}=u_{c}(t) f(t-c)\right.$.



$$
\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-c s} F(s), \text { where } F(s)=\mathcal{L}\{f(t)\}
$$

Thus,

$$
\mathcal{L}^{-1}\left\{e^{-c s} F(s)\right\}=u_{c}(t) f(t-c), \quad \text { where } f(t)=\mathcal{L}^{-1}\{F(s)\}
$$

A useful formula NOT in the book:

$$
\mathcal{L}\left\{u_{c}(t) h(t)\right\}=e^{-c s} \mathcal{L}\{h(t+c)\}
$$

(iv) Unit Impulse Functions: If $y=\delta(t-c)(c \geq 0)$, then

$$
\mathcal{L}\{\delta(t-c)\}=e^{-c s}
$$

(e) Convolutions:

$$
\mathcal{L}\{(f * g)(t)\}=\mathcal{L}\left\{\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right\}=\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
$$

(a) Rewrite a single $n^{t h}$ order equation $p_{0}(t) y^{(n)}+p_{1}(t) y^{(n-1)}+\cdots+p_{n}(t) y=g(t)$ as a system of $1^{\text {st }}$ order equations. Use the substitution :

$$
\text { Let } \begin{aligned}
& \mathrm{x}_{1}=\mathrm{y} \\
& \mathrm{x}_{2}=\mathrm{y}^{\prime} \\
& \quad \vdots \\
& \mathrm{x}_{\mathrm{n}}=\mathrm{y}^{(\mathrm{n}-1)}
\end{aligned} \quad \text { to get } 1^{\text {st }} \text { Order System : }\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=x_{3} \\
\vdots \\
x_{n-1}^{\prime}=x_{n-2} \\
x_{n}^{\prime}=\frac{1}{p_{0}}\left\{-p_{n} x_{1}-p_{n-1} x_{2}-\cdots-p_{1} x_{n}+g(t)\right\}
\end{array}\right.
$$

(b) Existence \& Uniqueness Theorem for Systems. If $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are continuous on an interval $\alpha<t<\beta$ containing $t_{0}$, then the IVP $\left\{\begin{array}{c}\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t) \\ \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}\end{array}\right.$ has a unique solution $\mathbf{x}(t)$ defined on the interval $\alpha<t<\beta$.
(c) The set of vectors $\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(m)}\right\}$ is linearly independent if the equation

$$
k_{1} \mathbf{x}^{(1)}+k_{2} \mathbf{x}^{(2)}+\cdots+k_{m} \mathbf{x}^{(m)}=\mathbf{0}
$$

is satisfied only for $k_{1}=k_{2}=\cdots=k_{m}=0$. This means you cannot write any one of these vectors as a linear combination of the others.
(d) Solve $2 \times 2$ systems of $1^{\text {st }}$ order equations $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x_{1}}{x_{2}}$ i.e., $\mathbf{x}^{\prime}=A \mathbf{x}$ using :
(i) Elimination Method : Basic idea - eliminate one of the unknowns (either $x_{1}$ or $x_{2}$ ) from the original system to get an equivalent single $2^{\text {nd }}$ order differential equation.
(ii) Eigenvalues \& Eigenvectors Method : See (11) below for solutions via this method and corresponding phase portraits.
Eigenvalue : If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then the eigenvalues of $A$ are the roots of

$$
|A-\lambda I|=\left|\begin{array}{cc}
(a-\lambda) & b \\
c & (d-\lambda)
\end{array}\right|=0
$$

Eigenvector: $\overrightarrow{\mathbf{v}}=\binom{v_{1}}{v_{2}} \neq\binom{ 0}{0}$ is a nonzero solution to $(A-\lambda I) \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$.
(e) If $\mathbf{x}^{(1)}(t)=\binom{x_{11}(t)}{x_{21}(t)}$ and if $\mathbf{x}^{(2)}(t)=\binom{x_{12}(t)}{x_{22}(t)}$, then the Wronskian is

$$
W\left[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right]=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

If $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ and $W\left[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\right]\left(t_{1}\right) \neq 0$, then the set $\left\{\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)\right\}$ forms a Fundamental Set of Solutions of the system and a Fundamental Matrix is
$\Phi(t)=\left(\begin{array}{ll}x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t)\end{array}\right)$.

## (11) Eigenvalue \& Eigenvector Method and Phase Portraits : $x^{\prime}=A x$

The following describes how to find the general solution to $(*)$ and plot solutions (trajectories). A plot of the trajectories of a given homogeneous system

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mathbf{x} \quad(*)
$$

is called a phase portrait. To sketch the phase portrait, we need to find the corresponding eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and then consider 3 cases :
(a) $\boldsymbol{\lambda}_{\mathbf{1}}<\boldsymbol{\lambda}_{\mathbf{2}}$, real and distinct: If $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}$ are e-vectors corresponding to $\lambda_{1}$ and $\lambda_{2}$, respectively $\Rightarrow \mathbf{x}^{(1)}(t)=e^{\lambda_{1} t} \mathbf{v}^{(1)}$ and $\mathbf{x}^{(2)}(t)=e^{\lambda_{2} t} \mathbf{v}^{(2)}$ are solutions and hence general solution of $(*)$ is $\mathbf{x}(t)=C_{1} \mathbf{x}^{(1)}(t)+C_{2} \mathbf{x}^{(2)}(t)$ and hence if $\boldsymbol{\lambda}_{\mathbf{1}}<\boldsymbol{\lambda}_{\mathbf{2}}$ :

$$
\mathbf{x}(t)=\underbrace{C_{1} e^{\lambda_{1} t} \mathbf{v}^{(1)}}_{\begin{array}{c}
\text { dominates } \\
\text { as } t \longrightarrow-\infty
\end{array}}+\underbrace{C_{2} e^{\lambda_{2} t} \mathbf{v}^{(2)}}_{\substack{\text { dominates } \\
\text { as } t \longrightarrow \infty}}
$$


(b) $\boldsymbol{\lambda}_{\mathbf{1}}=\boldsymbol{\alpha}+\boldsymbol{i} \boldsymbol{\beta}$ : If $\mathbf{w}=\mathbf{a}+i \mathbf{b}$ is a complex e-vector corresponding to $\lambda_{1}$ then $\Rightarrow$ $\mathbf{x}^{(1)}(t)=\Re e\left\{e^{\lambda_{1} t} \mathbf{w}\right\}=e^{\alpha t}(\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t)$ and $\mathbf{x}^{(2)}(t)=\Im m\left\{e^{\lambda_{1} t} \mathbf{w}\right\}=e^{\alpha t}(\mathbf{a} \sin \beta t+\mathbf{b} \cos \beta t)$ are real-valued solutions and hence general solution of $(*)$ is $\mathbf{x}(t)=C_{1} \mathbf{x}^{(1)}(t)+C_{2} \mathbf{x}^{(2)}(t)$.

$$
\text { If say } \alpha<0 \text { : }
$$


(Test a point to decide which)
(c) $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{\mathbf{2}}$ : If there is only one linearly independent eigenvector corresponding to $\lambda_{1}$, then solutions to $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ are $\mathbf{x}^{(1)}(t)=e^{\lambda_{1} t} \mathbf{v}$ and $\mathbf{x}^{(2)}(t)=t e^{\lambda_{1} t} \mathbf{v}+e^{\lambda_{1} t} \mathbf{a}$, where

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right) \mathbf{v}=\mathbf{0} \\
& \left(A-\lambda_{1} I\right) \mathbf{a}=\mathbf{v}
\end{aligned}
$$

( $\mathbf{v}$ is an eigenvector of $\mathbf{A}$, while $\mathbf{a}$ is called a "generalized eigenvector" of $\mathbf{A}$ )
The general solution of the system $(*)$ is $\mathbf{x}(t)=C_{1} \mathbf{x}^{(1)}(t)+C_{2} \mathbf{x}^{(2)}(t)$ and hence:

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}+C_{2}[\underbrace{t e^{\lambda_{1} t} \mathbf{v}}_{\substack{\text { dominates } \\ \text { as } t \longrightarrow \pm \infty}}+e^{\lambda_{1} t} \mathbf{a}]
$$

$$
\text { If say } \lambda_{1}<0 \text { : }
$$


(Test a point to decide which)

## (12) Particular Solutions to Nonhomogeneous Linear Systems

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)
$$

(a) Undetermined Coefficients for Systems The column vector $\overrightarrow{\mathbf{g}}(t)=\binom{g_{1}(t)}{g_{2}(t)}$ must have each component function $g_{1}(t)$ and $g_{2}(t)$ as one of the three special forms like those for Undetermined Coefficients for regular $2^{\text {nd }}$ order equations and $\mathbf{A}$ must be a constant matrix. The main difference is if say $\mathbf{g}(t)=\mathbf{u} e^{\lambda t}$ and $\lambda$ is also an eigenvalue of $\mathbf{A}$, then try a particular solution of the form $\mathbf{x}_{p}=\mathbf{a} t e^{\lambda t}+\mathbf{b} e^{\lambda t}$.
(b) Variation of Parameters for Systems : $\mathbf{x}^{\prime}=\mathbf{A}(\mathbf{t}) \mathbf{x}+\mathbf{g}(t)$ :

$$
\mathbf{x}_{p}(t)=\Phi(t) \int \Phi^{-1}(t) \mathbf{g}(t) d t
$$

where $\Phi(t)$ is a Fundamental Matrix of the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A}(\mathbf{t}) \mathbf{x}+\mathbf{g}(t)$ can have any form and A need not be a constant matrix.

## Practice Problems

[1] For what value of $\alpha$ will the solution to the IVP $\left\{\begin{array}{l}y^{\prime \prime}-y^{\prime}-2 y=0 \\ y(0)=\alpha \\ y^{\prime}(0)=2\end{array}\right.$ satisfy $y \rightarrow 0$ as $t \rightarrow \infty$ ?
[2] (a) Show that $y_{1}=x$ and $y_{2}=x^{-1}$ are solutions of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.
(b) Evaluate the Wronskian $W\left(y_{2}, y_{1}\right)$ at $x=\frac{1}{2}$.
(c) Find the solution of the initial value problem $x^{2} y^{\prime \prime}+x y^{\prime}-y=0, y(1)=2, y^{\prime}(1)=4$.
[3] Find the largest open interval for which the initial value problem
$3 x^{2} y^{\prime \prime}+y^{\prime}+\frac{1}{x-2} y=\frac{1}{x-3}, y(1)=3, y^{\prime}(1)=2$, has a solution.
In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a) and use the method of Undetermined Coefficients to find a particular solution $y_{p}$ in (b) and find the FORM of a particular solution (c).
[4] (a) $y^{\prime \prime}-5 y^{\prime}+6 y=0$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=t^{2}$
(c) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{2 t}+\cos (3 t)$
[5] (a) $y^{\prime \prime}-6 y^{\prime}+9 y=0$
(b) $y^{\prime \prime}-6 y^{\prime}+9 y=t e^{3 t}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{t}+\cos (3 t)$
[6] (a) $y^{\prime \prime}-2 y^{\prime}+10 y=0$
(b) $y^{\prime \prime}-2 y^{\prime}+10 y=e^{x}+\cos (3 x)$
(c) $y^{\prime \prime}-2 y^{\prime}+10 y=e^{x} \cos (3 x)$
[7] Find the general solution to (a) $y^{\prime \prime}+y^{\prime}-6 y=7 e^{4 t} \quad$ (b) $y^{\prime \prime}+y^{\prime}-6 y=7 e^{4 t}-100 \sin t$
[8] Solve this IVP: $y^{\prime \prime}-y^{\prime}=4 t, y(0)=0, y^{\prime}(0)=0$.
[9] Find the general solution to $y^{\prime \prime}+y=\tan t, 0<x<\frac{\pi}{2}$.
[10] The differential equation $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ has solutions $y_{1}(x)=x$ and $y_{2}=x^{2}$. Use the method of Variation of Parameters to find a solution of $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=2 x^{2}$.
[11] The differential equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$ has one solution $y_{1}(x)=x$. Use the method of Reduction of Order to find a second (linearly independent) solution of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$.
[12] For what nonnegative values of $\gamma$ will the the solution of the initial value problem $u^{\prime \prime}+\gamma u^{\prime}+4 u=0, u(0)=4, u^{\prime}(0)=0$ oscillate?
[13] (a) For what positive values of $k$ does the solution of the initial value problem $2 u^{\prime \prime}+k u=3 \cos (2 t), u(0)=0, u^{\prime}(0)=0$, become unbounded (Resonance)?
(b) For what positive values of $k$ does the solution of the initial value problem

$$
2 u^{\prime \prime}+u^{\prime}+k u=3 \cos (2 t), u(0)=0, u^{\prime}(0)=0, \text { become unbounded (Resonance) ? }
$$

[14] Find the steady-state solution of the IVP $y^{\prime \prime}+4 y^{\prime}+4 y=\sin t, y(0)=0, y^{\prime}(0)=0$.
[15] A $4-\mathrm{kg}$ mass stretches a spring 0.392 m . If the mass is released from 1 m below the equilibrium position with a downward velocity of $10 \mathrm{~m} / \mathrm{sec}$, what is the maximum displacement ?
In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a) and use the method of Undetermined Coefficients to find the FORM of a particular solution of the nonhomogeneous equation in (b).
[16] (a) $y^{\prime \prime \prime}-y^{\prime}=0$
(b) $y^{\prime \prime \prime}-y^{\prime}=t+e^{t}$
[17] (a) $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$
(b) $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=e^{t}+\cos t$
[18] Find the solution of the initial value problem $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0, y(0)=2, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$.
[19] Find the general solution of the differential equation $y^{\prime \prime \prime}+y^{\prime}=t^{2}$.
[20] Find the general solution of $y^{\prime \prime}+4 y^{\prime}=-10 \cos 2 t$.
[21] Find a fundamental set of solutions of $y^{(5)}-4 y^{\prime \prime \prime}=0$.
[22] Find the Laplace transform of these functions:
(a) $f(t)=3-e^{2 t}$
(b) $g(t)=100 t^{5}$
(c) $h(t)=\cosh \pi t$
(d) $k(t)=-10 t^{3} e^{5 t}$
[23] Find the inverse Laplace transform of
(a) $F(s)=\frac{9}{s^{2}-s-2}$
(b) $\quad F(s)=\frac{s}{(s-1)^{2}}$
(c) $F(s)=\frac{8}{(s+1)^{4}}$
(d) $F(s)=\frac{3 s+2}{s^{2}+2 s+5}$
[24] Solve these initial value problems:
(a) $\left\{\begin{array}{l}y^{\prime \prime}-y^{\prime}-6 y=0 \\ y(0)=1 \\ y^{\prime}(0)=-1\end{array}\right.$
(b) $\left\{\begin{array}{l}y^{\prime \prime}-2 y^{\prime}+2 y=\cos t \\ y(0)=1 \\ y^{\prime}(0)=0\end{array}\right.$
(c) $y^{\prime \prime}-y=\left\{\begin{array}{ll}1, & t<5 \\ 2, & 5 \leq t<\infty\end{array} \quad ; y(0)=y^{\prime}(0)=0\right.$.
(d) $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & t<1 \\ 0, & 1<t<\infty\end{array} \quad ; y(0)=y^{\prime}(0)=0\right.$.
(e) $y^{\prime}+y=g(t), y(0)=0$ and where $g(t)$ :

(f) $y^{\prime \prime}+4 y=\delta(t-3), \quad y(0)=y^{\prime}(0)=0$
[25] $\mathcal{L}\left\{\int_{0}^{t} 100 e^{-2 \tau} \cos \pi(t-\tau) d \tau\right\}=$ ?
[26] If $g(t)=\mathcal{L}^{-1}\{G(s)\}$, then $\mathcal{L}^{-1}\left\{\frac{G(s)}{(s-3)^{2}}\right\}=$ ?
[27] Use the Elimination Method to solve the system $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+x_{2} \\ x_{2}^{\prime}=4 x_{1}+x_{2}\end{array}\right.$
[28] Rewrite the $2^{\text {nd }}$ order differential equation $y^{\prime \prime}+2 y^{\prime}+3 t y=\cos t$ with $y(0)=1, y^{\prime}(0)=4$ as a system of $1^{\text {st }}$ order differential equations.
[29] Find eigenvalues and corresponding eigenvectors of (a) $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) \quad$ (b) $A=\left(\begin{array}{rr}-2 & 0 \\ 1 & -1\end{array}\right)$
[30] Find the solution of the IVP $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)\binom{x_{1}}{x_{2}}, \quad\binom{x_{1}(0)}{x_{2}(0)}=\binom{3}{2}$.
Find a fundamental matrix $\Phi(t)$.
[31] Solve $\quad\binom{x_{1}{ }^{\prime}}{x_{2}{ }^{\prime}}=\left(\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}, \quad \overrightarrow{\mathbf{x}}(0)=\binom{-1}{2}$.
[32] Find the general solution of the system $\quad \overrightarrow{\mathbf{x}}^{\prime}(t)=A \overrightarrow{\mathbf{x}}(t)$, where $\quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
[33] Tank \# 1 initially holds 50 gals of brine with a concentration of $1 \mathrm{lb} /$ gal, while Tank \# 2 initially holds 25 gals of brine with a concentration of $3 \mathrm{lb} / \mathrm{gal}$. Pure $\mathrm{H}_{2} \mathrm{O}$ flows into Tank \# 1 at $5 \mathrm{gal} / \mathrm{min}$. The well-stirred solution from Tank \# 1 then flows into Tank \# 2 at $5 \mathrm{gal} / \mathrm{min}$. The solution in Tank \# 2 flows out at $5 \mathrm{gal} / \mathrm{min}$. Set up and solve an IVP that gives $x_{1}(t)$ and $x_{2}(t)$, the amount of salt in Tanks \# 1 and \# 2, respectively, at time $t$.
[34] Tank \# 1 initially holds 50 gals of brine with concentration of $1 \mathrm{lb} /$ gal and Tank \# 2 initially holds 25 gals of brine with concentration $3 \mathrm{lb} / \mathrm{gal}$. The solution in Tank \# 1 flows at $5 \mathrm{gal} / \mathrm{min}$ into Tank \# 2, while the solution in Tank \# 2 flows back into Tank \# 1 at 5 gal $/ \mathrm{min}$. Set up an IVP that gives $x_{1}(t)$ and $x_{2}(t)$, the amount of salt in Tanks \# 1 and \#2, respectively, at time $t$.
[35] Find the general solution of $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{rr}-2 & 0 \\ 1 & -1\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{3}{1} e^{t}$.
[36] Find a particular solution of $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}-\binom{2}{3}$.
[37] Find the general solution of $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}-\binom{6 e^{-t}}{1}$.
[38] Match the phase portraits shown below that best corresponds to each of the given systems of differential equations:
(i) $\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \overrightarrow{\mathbf{x}}$; Solution : $\overrightarrow{\mathbf{x}}(t)=C_{1}\binom{1}{1} e^{t}+C_{2}\binom{1}{-1} e^{-t}$
(ii) $\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right) \overrightarrow{\mathbf{x}}$; Solution : $\overrightarrow{\mathbf{x}}(t)=C_{1}\binom{1}{1} e^{t}+C_{2}\binom{1}{-1} e^{3 t}$
(iii) $\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}2 & -1 \\ 1 & 0\end{array}\right) \overrightarrow{\mathbf{x}}$; Solution : $\overrightarrow{\mathbf{x}}(t)=C_{1}\binom{2}{2} e^{t}+C_{2} e^{t}\left\{\binom{2}{2} t+\binom{1}{-1}\right\}$
(iv) $\overrightarrow{\mathbf{x}}^{\prime}=\left(\begin{array}{rr}-1 & 1 \\ -1 & -1\end{array}\right) \overrightarrow{\mathbf{x}}$; Solution : $\overrightarrow{\mathbf{x}}(t)=C_{1}\binom{\cos t}{-\sin t} e^{-t}+C_{2}\binom{\sin t}{\cos t} e^{-t}$

(A)

(B)

(C)


(E)

(G)

(D)

(F)

(H)

## Answers

[1] $\alpha=-2 \quad[2]$ (b) $W\left(x^{-1}, x\right)\left(\frac{1}{2}\right)=4$; (c) $y=3 x-x^{-1} \quad$ [3] $0<x<2$
[4] (a) $y=C_{1} e^{2 t}+C_{2} e^{3 t}$ (b) $y=A t^{2}+B t+C \quad$ (c) $y=A t e^{2 t}+B \cos (3 t)+C \sin (3 t)$
[5] (a) $y=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(b) $y=t^{2}(A t+B) e^{3 t}$
(c) $y=A e^{t}+B \cos (3 t)+C \sin (3 t)$
[6] (a) $y=C_{1} e^{x} \cos (3 x)+C_{2} e^{x} \sin (3 x)$ (b) $y=A e^{x}+B \cos (3 x)+C \sin (3 x)$
(c) $y=x(A \cos (3 x)+B \sin (3 x)) e^{x}$
[7](a) $y=C_{1} e^{-3 t}+C_{2} e^{2 t}+\frac{1}{2} e^{4 t} \quad$ (b) $y=C_{1} e^{-3 t}+C_{2} e^{2 t}+\frac{1}{2} e^{4 t}+2 \cos t+14 \sin t$
[8] $y=-4+4 e^{t}-2 t^{2}-4 t$
[9] $y=C_{1} \cos t+C_{2} \sin t-(\cos t) \ln (\sec t+\tan t)$
[10] $y=2 x^{2} \ln x$ or $y=2 x^{2} \ln x+\left(C_{1} x+C_{2} x^{2}\right)$
[11] $y=x^{-1}$ or $y=A x^{-1}+B x, A \neq 0$
[12] $0 \leq \gamma<4$
[13] (a) $k=8$ (resonance) (b) NO value of $k$, all solutions are bounded.
[14] $y=\frac{1}{25}(3 \sin t-4 \cos t)$
[15] $u(t)=\cos 5 t+2 \sin 5 t=\sqrt{5} \cos (5 t-\delta), \delta=\tan ^{-1} 2 \approx 1.1$ Thus amplitude $=\sqrt{5}$.
[16] (a) $y=C_{1}+C_{2} e^{-t}+C_{3} e^{t} \quad$ (b) $y=t(A t+B)+C t e^{t}$
[17] (a) $y=C_{1} e^{t}+C_{2} t e^{t}+C_{3} e^{-t}$
(b) $y=A t^{2} e^{t}+B \cos t+C \sin t$
[18] $y=3-e^{t}+t e^{t}$
[19] $y=C_{1}+C_{2} \cos t+C_{3} \sin t+\frac{1}{3} t^{3}-2 t$
[20] $y=C_{1}+C_{2} e^{-4 t}+\left(\frac{1}{2} \cos 2 t-\sin 2 t\right)$
[21] $\left\{1, t, t^{2}, e^{2 t}, e^{-2 t}\right\}$
[22] (a) $\frac{2 s-6}{s^{2}-2 s}$
(b) $\frac{12000}{s^{6}}$
(c) $\frac{s}{s^{2}-\pi^{2}}$
(d) $-\frac{60}{(s-5)^{4}}$
[23] (a) $3\left(e^{2 t}-e^{-t}\right)$
(b) $e^{t}+t e^{t}$
(c) $\frac{4}{3} t^{3} e^{-t}$
(d) $3 e^{-t} \cos 2 t-\frac{1}{2} e^{-t} \sin 2 t$
[24] (a) $y=\frac{1}{5}\left(e^{3 t}+4 e^{-2 t}\right)$ (b) $y=\frac{1}{5}\left(\cos t-2 \sin t+4 e^{t} \cos t-2 e^{t} \sin t\right)$
(c) $y=-1+\frac{1}{2}\left(e^{t}+e^{-t}\right)+u_{5}(t)\left(-1+\frac{1}{2}\left(e^{(t-5)}+e^{-(t-5)}\right)\right)$,
or $y=-1+\cosh t+u_{5}(t)(-1+\cosh (t-5))$
(d) $y=\left(-\frac{1}{8} \sin 2 t+\frac{t}{4}\right)-u_{1}(t)\left(-\frac{1}{8} \sin 2(t-1)+\frac{t-1}{4}\right)-u_{1}(t)\left(\frac{1}{4}-\frac{1}{4} \cos 2(t-1)\right)$
(e) $y=3\left(1-e^{-t}\right)-3 u_{2}(t)\left(1-e^{-(t-2)}\right)+3 u_{4}(t)\left(1-e^{-(t-4)}\right) \quad$ (f) $y=\frac{1}{2} u_{3}(t)(t) \sin 2(t-3)$
$\left[\mathbf{2 5 ]} \frac{100 s}{(s+2)\left(s^{2}+\pi^{2}\right)} \quad[26] \int_{0}^{t}(t-\tau) e^{3(t-\tau)} g(\tau) d \tau\right.$ or $\int_{0}^{t} \tau e^{3 \tau} g(t-\tau) d \tau$
[27] $x_{1}(t)=C_{1} e^{3 t}+C_{2} e^{-t}, x_{2}(t)=2 C_{1} e^{3 t}-2 C_{2} e^{-t}$
[28] Let $x_{1}=y, x_{2}=y^{\prime}$, then $\left\{\begin{array}{l}x_{1}^{\prime}=x_{2} \\ x_{2}^{\prime}=-3 t x_{1}-2 x_{2}+\cos t\end{array}\right.$, where $x_{1}(0)=1, x_{2}(0)=4$
[29] (a) $\lambda_{1}=3, \mathbf{v}^{(1)}=\binom{1}{2} ; \quad \lambda_{2}=-1, \mathbf{v}^{(2)}=\binom{1}{-2}$
[29] (b) $\lambda_{1}=-1, \mathbf{v}^{(1)}=\binom{0}{1} ; \quad \lambda_{2}=-2, \mathbf{v}^{(2)}=\binom{1}{-1}$
[30] $\mathbf{x}(t)=2 e^{3 t}\binom{1}{2}+e^{-t}\binom{1}{-2}, \quad \Phi(t)=\left(\begin{array}{rr}e^{3 t} & e^{-t} \\ 2 e^{3 t} & -2 e^{-t}\end{array}\right)$
[31] $\mathbf{x}(t)=2 e^{t}\binom{\sin t}{\cos t}-e^{t}\binom{\cos t}{-\sin t} \quad[32] \quad \mathbf{x}(t)=C_{1} e^{t}\binom{1}{0}+C_{2}\left\{e^{t}\binom{0}{1}+t e^{t}\binom{1}{0}\right\}$
[33] $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{rr}-\frac{1}{10} & 0 \\ \frac{1}{10} & -\frac{1}{5}\end{array}\right)\binom{x_{1}}{x_{2}},\binom{x_{1}(0)}{x_{2}(0)}=\binom{50}{75}$
Solution : $\binom{x_{1}}{x_{2}}=50 e^{-\frac{t}{10}}\binom{1}{1}+25 e^{-\frac{t}{5}}\binom{0}{1}$
[34] $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{rr}-\frac{1}{10} & \frac{1}{5} \\ \frac{1}{10} & -\frac{1}{5}\end{array}\right)\binom{x_{1}}{x_{2}},\binom{x_{1}(0)}{x_{2}(0)}=\binom{50}{75}$
Solution : $\binom{x_{1}}{x_{2}}=\frac{125}{3}\binom{2}{1}-\frac{100}{3} e^{-\frac{3 t}{10}}\binom{1}{-1}$
[35] $\quad \mathbf{x}(t)=C_{1} e^{-t}\binom{0}{1}+C_{2} e^{-2 t}\binom{1}{-1}+e^{t}\binom{1}{1} \quad[36] \quad \mathbf{x}_{p}(t)=\binom{3}{2}$
[37] $\mathbf{x}(t)=C_{1} e^{t}\binom{0}{1}+C_{2} e^{2 t}\binom{1}{1}+e^{-t}\binom{2}{-1}+\binom{0}{1}$
[38] (i) $\mathbf{C}$ (ii) $\mathbf{A}$ (iii) $\mathbf{B}$ (iv) $\mathbf{D}$

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\}
$$

1. 1 - $\frac{1}{s}$
2. $e^{a t}$

$$
\frac{1}{s-a}
$$

3. $\quad t^{n}$

$$
\frac{n!}{s^{n+1}}
$$

4. $\quad t^{p}(p>-1)$

$$
\frac{\Gamma(p+1)}{s^{p+1}}
$$

5. $\quad \sin a t$

$$
\frac{a}{s^{2}+a^{2}}
$$

6. $\cos a t$

$$
\frac{s}{s^{2}+a^{2}}
$$

7. $\sinh a t$

$$
\frac{a}{s^{2}-a^{2}}
$$

8. 

$\cosh a t$

$$
\frac{s}{s^{2}-a^{2}}
$$

9. $e^{a t} \sin b t$

$$
\frac{b}{(s-a)^{2}+b^{2}}
$$

10. 

$$
e^{a t} \cos b t
$$

$$
\frac{s-a}{(s-a)^{2}+b^{2}}
$$

11. $\quad t^{n} e^{a t}$

$$
\frac{n!}{(s-a)^{n+1}}
$$

11. $t^{n} e^{a t}$

$$
\frac{n!}{(s-a)^{n+1}}
$$

12. 

$$
u_{c}(t)
$$

$$
\frac{e^{-c s}}{s}
$$

13. $u_{c}(t) f(t-c)$

$$
e^{-c s} F(s)
$$

14. $e^{c t} f(t)$

$$
F(s-c)
$$

15. 

$$
f(c t)
$$

$$
\frac{1}{c} F\left(\frac{s}{c}\right), c>0
$$

16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$

$$
F(s) G(s)
$$

17. 

$\delta(t-c)$

$$
e^{-c s}
$$

18. 

$$
f^{(n)}(t)
$$

$$
s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

19. 

$(-t)^{n} f(t)$

$$
F^{(n)}(s)
$$

